
ADT Stack

1

Biswajit Prasad
Assistant Professor

Department of Computer Science 
Maharaja Manindra Chandra College

Calcutta 700 003



Definitions

2

• Objects

A finite sequence / chain of elements of 
 the same type, where elements can be  
inserted or deleted from only one end.

• Operations
• s_create (s)

Function to initialize an empty stack
• s_dispose (s)

Function to dispose stack space held by s



Definitions…

3

• s_empty (s) boolean

Function returns true if stack s is empty.

• s_full (s) boolean

Function returns true if stack s is full.



Definitions…

4

• push (s,e)
Function to place an item with e’s value on the 
 top of the stack s.

• pop (s)
Function to return the top item of the stack;

The  item is removed from the stack.

• Stack is a Last-In-First-Out (LIFO) structure.



Some Example Problems

5

1. Duplicate the top element on a stack.

2. Print the elements of a stack .

a) From top to bottom
b) From bottom to top

i. Stack becoming empty
ii. Stack unchanged

3. Print the data from a file of integer in the reverse  
order.

4. Write a boolean function to return true if two stacks 
 are equal.



Array implementation of stack

6

# define 
MAXST

102
4

# define TRUE 1

# define FALSE 0
struct stack_t {

int top ;
T val [MAXST] ;

} ;

typedef struct stack_t * stack ;



Implementation…

7

stack s_create ( )
{ stack p;

if ((p = (stack) malloc(sizeof (struct stack_t)))
== NULL)

{
Memory allocation error;  exit(0);

}
p->top = -1 ;  return p;
}void s_dispose (stack s)
{ if (s != NULL)

free(s);
}



Implementation …

8

int s_empty (stack s)
{

return (s->top == -1) ;
}

int s_full (stack s)
{

return ( s->top == MAXST-1);
}



Implementation…

9

void push (stack s , T e)
{ if (!(s_full(s)))

s->val [ ++( s->top) ] = e;  
else stack overflow error;

}

T pop (stack s )
{ if (!(s_empty(s)))

return s->val [(s->top) -- ] ; 
 else stack underflow error;

}



Stack Implementation using Linked List

 s_create  init_l

• s_empty  empty_l

• push  insert_front

• pop  delete_front

10



A Classic Example

11

Arithmetic Expression Evaluation



Representation of arithmetic expressions

12

1. Infix Notation
Operator appears in between operands .

a + b

2. Prefix Notation
Operator appears before operands .

+ a b

3. Postfix ( or Reverse Polish ) Notation
Operator appears after operands .

a b +



Infix Evaluation

13

In order to evaluate infix expression we have to 
assign  priority to operators.

Operator priority

** , u+ ,u- , not
*, / , div , mod ,and
+ , - , or
< , <= , = , >= , >

4
3
2
1

what about brackets?



Manual Conversion of Infix to Postfix

A * B / C
A / B ** C + D * E – A * C

For Fully Parenthesized Expressions

((( A / ( B ** C )) + ( D * E )) – (A * 
C ))

or ABC ** / DE *+ AC *-

14



Postfix Evaluation

15

{ x = get_next_token(e) ;  while ( x != sentinel)
{

if (is_operand(x))
push (s,x);

else {
pop required no. of operands ;  

perform operation on them ;  push 
result on stack ;

}
x = get_next_token (e);

}
}
 The stack contains the value of the expression.



Conversion of Infix to Postfix

16

Observations
1. Operands are in the same order.

2. Operators are rearranged in the order they are 
 evaluated.

3. Operators follow their operands.

4. Brackets are deleted.



Conversion…

17

 Store the operators in a stack till the right moment, then unstack 
 them and output .

•Priorities are assigned to the operators in-stack and in-coming :  

Symbol ISP ICP

) - -

** 3 4

* , / 2 2

+ , - 1 1

( 0 4
 Operators are taken out from stack as long as isp >= icp.



Conversion Algorithm

18

{ initialize stacks ;  push sentinel ‘#’ ;
x = get_new_token (e) ;
while ( x != ‘#’ )
{

if ( is_operand (x) )
output (x) ;  else if (x == ‘)’ )

{
while (( y = pop (s)) != ‘(‘ ) 

 output (y) ;
}
else



Conversion Algorithm…

19

{
while (isp ( y = pop(s)) >= icp (x)) 

 output (y) ;
push (y) ;
push (x);
} /* end else */  x = 

get_next_token (e) ;
} /* end while */  while (( y = 

pop (s)) != ‘#’)  output (y) ;
output (‘#’);

} */end algo */



Conclusion

20

 Stack is a very useful data structure. Most of the  
modern computers and microprocessors provide a  
hardware stack. Even there are stack-oriented  
computer architectures.

• A very important application of stack is to implement 
 recursive subroutine call / return mechanism.

• The scope rule and block-structure can also be  
implemented using stack.

• Stacks are used in the development of Compilers,  
System Programs, Operating Systems and in many  
elegant application algorithms.



ADT Queue

21



Objects

22

A finite sequence / chain of elements of  
the same type, where elements enter from 
 the rear end and exit from the front end.

The front item has been in the queue the  
longest, and the rear item entered the  
queue most recently.



Operations

23

• init_q (q)
Function to initialize an empty queue q.

• dispose_q (q)
Function to dispose the memory space held by q

• empty_q (q)
Boolean function to return true if the queue q is empty.

• full_q (q)

Boolean function to return true if the queue q is full.



Operations

24

• init_q (q)
Function to initialize an empty queue q.

• dispose_q (q)
Function to dispose the memory space held by q

• empty_q (q)
Boolean function to return true if the queue q is empty.

• full_q (q)

Boolean function to return true if the queue q is full.



Operations…

25

• enqueue (q,c)
Function to place an item with e’s value into the queue 
 q at the rear.

• dequeue (q)
Function to take the front item out of the queue q.

• Queue is a FIRST-IN-FIRST-OUT (FIFO) 
structure.



A Few Example Problems

26

Forward b) reverse
Queue becoming empty ii. Queue unchanged

1. Append a queue p at the end of a queue q.

2. Add the elements of a queue and return the sum.

3.Print queue  a)

4. Boolean function equal_q (q1, q2); queue should  
remain unchanged.

5. Reverse a queue.
6. Procedure Replace (q, e, x ) to replace every  occurrence 

of element e in a queue with the value of  x.



Implementation of Queue using Array

 Simple array implementation is not  
elegant and wasteful of memory.

• A circular array is a better option.

27



Implementation

28

#define MAX
Q

102
4

#define TRUE 1

#define FALS
E

0
struct

int  
int

queue_t {  
front, rear ; 
 count ;

T val 
[MAXQ] ;

};
typedef struct queue_t * queue ;



Implementation…

29

queue init_q ( )
{

queue q;
if ((q = (queue) malloc(sizeof (struct queue_t)))

== NULL)
{
Memory allocation error;  exit(0);
}
q->front = 1 ;  q->rear = 0 ;  q->count = 0 ;  
return q;
}

void dispose_q (queue q)
{ if (q != NULL)

free(q);
}



Implementation …

30

int empty_q (queue q)
{

return ( q->count == 0) ;
}

int full_q (queue q)
{

return (q->count == MAXQ) ;
}



Implementation…

31

void enqueue ( queue q , T e )
{ if (!(full_q(q)))

{q->rear = ( q->rear + 1) % MAXQ;  
q->val [ q->rear ] = e ;
(q->count) ++ ;}
else Queue full error;

}

T dequeue ( queue q)
{

T x ;
if (!(empty_q(q)))
{x = q->val [q-> front ] ;
q->front = (q->front + 1) % MAXQ;  
(q->count) -- ;
return x;}
else Queue empty error;

}



Implementation of Queue using Linked List

32

 Use a circular linked list with tail pointer

• init_q  init_l
• empty_q  empty_l

 enqueu
e

 insert_after (tail); 
advance

tail

 dequeu
e

 delete_after (tail);



Application of Queue

33

 A major application of queue is in simulation [ see  
Kruse for example] .

• In operating systems, queues are used for process  
management, I/O request handling etc.
Example: Print queue of DOS, Message queue of Unix 
 IPC.

• Queues are also used in some elegant algorithms like  
graph algorithms.



Types of Queue

34

• A special kind of queue is a double-ended 

queue,  where the enqueue and dequeue operations can 

be  performed at both front and rear.

• Another special kind of queue is a priority 

queue .  An element with a higher priority can overtake 

another  with a lower priority. But elements of the 

same priority  are treated FIFO.


	ADT Stack
	Definitions
	Definitions…
	Definitions… (2)
	Some Example Problems
	Array implementation of stack
	Implementation…
	Implementation …
	Implementation… (2)
	Slide 10
	A Classic Example
	Representation of arithmetic expressions
	Infix Evaluation
	Manual Conversion of Infix to Postfix
	Postfix Evaluation
	Conversion of Infix to Postfix
	Conversion…
	Conversion Algorithm
	Conversion Algorithm…
	Conclusion
	ADT Queue
	Objects
	Operations
	Operations (2)
	Operations…
	A Few Example Problems
	Slide 27
	Implementation
	Implementation… (3)
	Implementation … (2)
	Implementation… (4)
	Implementation of Queue using Linked List
	Application of Queue
	Types of Queue

